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Abstract
A simplified approach is presented for the analysis of broadening and shift of
emission lines in hot dense plasmas. The basic approximation which allows this
simplified approach is the factorization of the wavefunction for the many-body
problem into the wavefunction for the plasma particles, and the wavefunction
which describes the internal degrees of freedom.

PACS numbers: 32.70.Jz, 05.30.−d, 52.59.Hq

1. Introduction

Existing algorithms for evaluating atomic spectral line shapes in plasmas are based on rigorous
theoretical derivations and are, experimentally, well established (Griem 1997). Nevertheless,
we have found it advantageous to develop a new theoretical approach for the purpose of
constructing an opacity code for light ions in dense hot plasmas. The evaluation of atomic
spectral line shape in plasmas requires the reduction of the many-body problem of the plasma
particles (including internal degrees of freedom) to an equation for the time evolution of the
averaged atomic dipole operator, which in frequency space yields the spectrum. In existing
theories, this task is performed by using kinetic theory techniques (Hussey et al 1975) or by
the Zwanzig projection operator method (Smith and Hooper 1967, Boercker et al 1987). The
first approach focuses on the plasma electrons effect. In the cases where ion motion during
the radiation time may be neglected, the theory accounts for the effect of ions by including the
interaction of a single realization of (static) ion microfield in the effective Hamiltonian of the
radiator and by averaging the dipole operator over all realizations of the ion microfield (Griem
1997). The second approach based on the Zwanzig projection operator method also allows the
ion dynamics effect to be included (Boercker et al 1987). In the present work, an alternative
simplified approach is derived for the evaluation of spectral line shapes. Our approach starts
from the factorization of the wavefunction for the many-body problem into a product of two
wavefunctions: one describing the plasma particles, and the other accounting for the ion’s
internal degrees of freedom. A similar approximation was applied in the past (Baranger 1958)
using similar factorization also to the plasma wavefunction. In the present work we push this
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approach further, avoiding any further approximation to the plasma wavefunction. In section 2,
a derivation is described, which reduces the many-body problem to a stochastic differential
equation in time. In section 3, the equation for the averaged dipole operator is derived, using
the Bourret approximation (Brissaud and Frisch 1974). The averaged equation is solved by
treating the time dependence of the ion field (ion dynamics) as a small perturbation. Section 4
is devoted to a summary and discussion of the results.

2. The factorization approximation

We shall start with the picture of a plasma made of point ions and electrons where the plasma
Hamiltonian Hp does not involve the internal degrees of freedom in an ion. We shall assume
that the wavefunction for the atom–plasma system may be factorized as (Baranger 1958)

� = �A�P (1)

where �A represents the NB electrons in the radiating atom (or ion) and �P represents the
perturbers (i.e. plasma which is made of point electrons and ions). The dynamics of �P is
controlled by the Hamiltonian Hp that includes the kinetic energy and the interaction between
perturbers. The total wavefunction � is evolved by the Hamiltonian HA + Hp + V , where
HA is the Hamiltonian of the unperturbed emitter and V is the (Coulomb) interaction between
the electrons in the emitter and all the perturbers (point ions and electrons). The factorization
assumption (1) that is the main approximation in the present work allows the derivation of
relatively simple results. This approximation neglects the correlation and exchange interaction
between a bound electron and a free electron in the plasma and assumes that the dynamics of
the plasma wavefunction �P is not affected by the evolution of the internal degrees of freedom
of the radiator (i.e. �A). We have checked the effect of correlation and exchange interaction
between bound and free electrons in hot plasmas (e.g. Fe at 2 keV and natural density) by
comparing the results of a detailed, numerical, electron–ion scattering calculation using a
totally anti-symmetric wavefunction to the results of a calculation with the wavefunction of
the scattered electron factored as �P in equation (1). We have found that in typical cases, the
factorization approximation (equation (1)) is justified. With this approximation, it is readily
found that the dynamics of the internal degrees of freedom of an ion in the plasma is governed
by a Hamiltonian of the form HA + W where

W
(�r1 . . . �rNB

, t
) =

NB∑
j=1

∫
e

|�rj − �r ′|(ZenI (�r ′, t) − ene(�r ′, t)) d3�r ′ (2)

i.e. in the factorization approximation, the interaction potential, W, acting on the bound
electrons is a functional of the electron and ion densities, nI , ne, in the plasma only.
Coordinates of plasma particles and plasma correlations do not appear explicitly in the ion–
plasma interaction potential. They do, however, affect the dynamics of nI and ne, that is
governed by the equation for �P or by any, possibly quantum (Klimontovich 1982), plasma
kinetic equation derived from it.

We define the time-averaged densities by n̄e,I (�r), and the fluctuations around these
averages by n̄e,I (�r) = lim�→∞ 1

�

∫ �

0 ne,I (�r, t) dt and δne,I (�r, t) = ne,I (�r, t) − n̄e,I (�r).
Similarly, we also split the plasma potential into the averaged potential W̄

(�r1 . . . �rNB

)
and

the fluctuating part δW
(�r1 . . . �rNB

, t
)
.

The static ‘smooth’ electron or ion density n̄e,I (�r) in the vicinity of a test ion depends on
the distance from it and changes as the probability of finding electrons (or ions) at this distance,
i.e. it is proportional to the electron–ion (or ion–ion) correlation function (Percus 1962) and
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may be obtained by self-consistent field models (see, for example, Liberman 1979). Temporal
fluctuations in the density due to passing particles are smoothed out by the averaging process,
and appear only in δW. Note that, due to the extraction of the inhomogeneous part W̄ , the
fluctuating component δW is statistically homogeneous in space and time.

The Hamiltonian which governs the dynamics of the internal degrees of freedom of
an ion in the plasma, when represented in terms of the eigenfunctions and eigenvalues
{φa, εa} of HA + W̄ , reads as Hab = δa,bεa + δWe

ab(t) + δWI
ab(t) with δW

e,I
ab (t) =

ae,I
∫

h̄�ab(�r ′)δne,I (�r ′, t) d3�r ′ where ae = −1, aI = Z, and �ab is the matrix element
of the Coulomb interaction between all bound electrons and a point charge in the plasma:

h̄�ab(�r ′) =
∫

φa

(�re1, . . . , �reNB

)

 NB∑

j=1

∫
e2

|�rej − �r ′|


φb

(�re1, . . . , �reNB

)
d3re1 . . . d3reNB

. (3)

3. The spectrum

The spectrum is determined by the dipole correlations (Griem 1997):

F(ω) =
∑
a,b

1

2π
|dab|2

∫ θ

0
eiωτ [ρab(0)ρ∗

ba(τ )]av dτ (4)

where ρ = ∫
�A

(�r1 . . . �rNB
, t : η

)
�∗

A

(�r ′
1 . . . �r ′

NB
, t : η

)
f (η) dη is the atomic density matrix,

η denotes the parameters that characterize initial conditions and �d = ∑NB

j=1 e�rj is the dipole.
The operation [· · ·]av denotes an averaging over all possible realizations of electron and
ion density fluctuations δne, δnI . In the following, we shall also consider averaging over
realizations of electron density fluctuations with a fixed single realization of ion density
fluctuations. This will be denoted by [· · ·]ave. The averaging over ion realizations will be
denoted by {· · ·}avi so that [· · ·]av = {[· · ·]ave}avi.

In order to evaluate the spectrum (4), it is customary to consider the Green function
(Sobel’man et al 1981) for the density matrix ( �dabρab(t)) · ( �dbaρba(0)) = ∑

Gaba′b′(t, 0) �dab ·
�db′a′ . Starting with the equation for �A with the definition of ρ and G, it is readily seen that G

obeys the equation ih̄ ∂
∂t

G = LG with the initial condition Gpq(t
′, t ′) = δp,q or equivalently,

it obeys the integro-differential equation

ih̄
∂

∂t
G(t, t ′) = [L0 + LI (t)]G + Le(t)Gslow +

1

ih̄

∫ t

0
dt1 Le(t)Gslow(t, t1)L

e(t1)G(t1, t
′).

(5)

In the above equation L is the Liouville operator Lpq = Haa′δbb′ − Hbb′δaa′ = L0 + LI + Le

where

L0
pq = L0

aba′b′ = δaa′δbb′(εa − εb)

Le,I
pq (t) = L

e,I
aba′b′(t) = ae,I

∫
Aaba′b′(�r ′)δne,I (�r ′, t) d3�r ′ (6)

Aaba′b′ = h̄�aa′δbb′ − h̄�b′bδa′a

p(a, b) = (a − 1)NB + b, q(c, d) = (c − 1)NB + d , and Gslow is the solution of the equation
ih̄ ∂

∂t
Gslow = (L0 + LI )Gslow with the initial condition Gslow

pq (t ′, t ′) = δp,q .
In terms of G, the spectrum (4) may be written as

F(ω) =
∑
abcd

�dab · �dcd(�(ω))abcd (7)

where �(ω) is the Laplace transform of [G(t, 0)]av, i.e. �(ω) = 1
2π

∫ ∞
0 eiωt [G(t, 0)]av dt .
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The only approximation used in the derivation of equation (5) from the basic equation
for � is the factorization assumption (1). In order to reduce it to an equation for the averaged
function [G(t, t ′)]ave we perform the averaging over realizations of electron fluctuations, and
further assume that the correlation time for electron fluctuations is much shorter than the typical

evolution time of G. This assumption is justified when the plasma frequency ωpe =
√

4πn̄ee2

m

(where m is the electron mass) is much larger than the norm of the radiator–plasma coupling
matrix δWe+δWI

h̄
. In this case we may assume that δne and G are statistically independent and

use the Bourret approximation (Brissaud and Frisch 1974), i.e.

[δne(�r ′, t1)δne(�r ′′, t2)G(t2, t
′)]ave ≈ [δne(�r ′, t1)δne(�r ′′, t2)]ave[G(t2, t

′)]ave

= S̃ee(�r ′ − �r ′′, t1 − t2)[G(t2, t
′)]ave (8)

where S̃ee is the electron–electron density correlation function.
Since the relevant integration time in equation (5) is limited by the electron–electron

correlation time τe ∼ 1
ωpe

that is always much shorter than the variation time of the ion field

τi ∼ 1
ωpi

, the effect of temporal variation of the ion field on Gslow(t, t1) may be neglected. With
these approximations, equation (5) when averaged over realizations of electron fluctuations is
reduced to{

ih̄
∂

∂t
− (L0 + LSI )

}
[G(t, t ′)]ave − 1

ih̄

∫ t

0
K(t − t1)[G(t1, t

′)]ave dt1

= {LI (t) − LSI }[G(t, t ′)]ave (9)

where K(t) represents the electron ‘collision’ operator

K(t) =
∫

d3�k
(2π)3

A(�k)

[∫
d3�r e−i�k·�r e− i

h̄
(L0+LSI )t S̃ee(�r, t)

]
A(−�k). (10)

In writing equation (9) we have replaced the ion interaction LI (t) on the left-hand side
by its static approximation, LSI , and compensated for that in the right-hand side of the
equation (no approximation is involved in this rearrangement). In this way, the right-hand side
represents the ion dynamics correction. We are interested in the cases where the ion interaction
is predominantly static, i.e. the right-hand side of equation (9) may be considered as a small
correction. This enables us to solve the equation by iteration. We start with the zero-order
approximation which neglects the ion dynamics term. This yields G(0) that depends only on
the time difference t1 − t ′, higher order corrections are obtained by the iteration[

−i

(
ω − (L0 + LSI )

h̄

)
+ �(ω)

]
[G̃(n)(ω)]ave

= I +
i

2πh̄

∫ ∞+iξ

−∞+iξ
�LI (ω − ω′, β)[G̃(n−1)(ω′)]ave dω′ (11)

with �(ω, α) = ∫ ∞
0 eiωtK(t, α) dt and �LI (ω) = LSI

ω−ω′ − ∫ ∞
0 eiωtLI (t) dt .

In the zero-order approximation we get

�0(ω) =
(∫

(�(ω, α))−1Df SI (α) dα

)
(12)

where

�(ω, α) = (G̃(0)(ω, α))−1 = −i

(
Iω − 1

h̄
L0 − 1

h̄
LSI (α)

)
+ �(ω, α) (13)
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α denotes the set of parameters that characterize a realization of static ion fluctuation δnSI (α)

(which in practice should be transformed to the field at the radiator point) and f SI (α) is the
probability for this realization (ion microfield distribution).

Correcting to first order we get

[G̃(ω)]ave =
[
−i

(
ω − (L0 + LSI (α))

h̄

)
+ �(ω, a)

]−1

×
[
I +

i

2πh̄

∫ ∞+iξ

−∞+iξ
�LI (ω − ω′, β)[G̃(0)(ω′, α)]ave dω′

]
(14)

where β denotes the set of parameters that characterize the correction δnI (�r, t) − δnSI (�r) and
ξ is chosen so that all the poles in the integrand are below the contour of integration.

The first-order correction to � is linear in the correction �LI that, in turn, is linear
in δnI (�r, t) − δnSI (�r). This means that in evaluating �LI(ω − ω′, β), we may expand
δnI (�r, t) − δnSI (�r) in any basis of functions (provided that we know the occurrence probability
of every element in the basis). Summations over realizations and over the basis elements
making a specific realization commute.

For the basis of plane waves, the probability for an ion density wave of amplitude
(complex) having norm a1 , wave vector of norm k1 and frequency ω1 may be estimated by a
simple generalization of the method developed by Pines and Bohm (see the appendix in Pines

and Bohm (1952)) f DI (a1, k1, ω1) = e−a2
1/(n2

0Sii (k1 ,ω1))

n2
0S

ii (k1,ω1)
where Sii is the ion dynamic structure

factor.
With this probability, �(ω), corrected to first order, is �(ω) = ∫ �−1(I + 	)f SI (α) dα

where

	(ω, α)D = i
∫ ∞

0
ν0(ω1)(�(ω − ω1, α))−1 dω1

(ν0(ω))aba′b′ =
√

π

2
n0Z

∫ √
Sii (k, ω)

[
h̄

(2π)3

∫
(�aa′(�k)δbb′ − �b′b(�k)δa′a) d��k

]
k2 dk.

As expected, the dynamic correction Re(ω, α) involves coupling between G̃(ω) at
different frequencies with coupling strength which is directly related to the spectrum of
fluctuations in the ion density, Sii (k, ω).

4. Summary and discussion

Existing algorithms for evaluating line shape are based on rigorous theoretical derivations
and are, experimentally, well established (Griem 1997). Nevertheless, we have found it
advantageous to develop a new theoretical approach that is suitable for the construction of an
opacity code for light ions in dense hot plasmas. The only approximation used in the reduction
of the basic equation for the many-body wavefunction � to the stochastic equation (5) for
the dipole is the factorization assumption (1). This approximation neglects the exchange and
correlation interaction between bound and free electrons and the effect of the bound electrons
on the dynamics of perturbers. It does not involve any further approximation concerning the
plasma wavefunction �P , i.e. equation (5) holds also for plasmas within the quantum and
strong coupling regimes, as long as the exchange and correlation between bound and free
electrons are small.

The spectrum obtained by neglecting ion dynamics effect yields the same formula as
obtained by expanding up to second order in electron–perturber interaction (Smith and
Hooper 1967, Hussey et al 1975). In the present approach it is derived by supplementing
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the factorization approximation (equation (1)) with the Bourret approximation (equation (8)).
This is justified when the correlation time for electron fluctuations is much shorter than the
typical evolution time of the average dipole, i.e. when the plasma frequency is much larger
than the norm of the radiator–plasma coupling matrix e2〈x〉2n0KBT

h̄2ω2
p

 1 ⇒ KBT  1
2π

h̄2

2m
1

〈x〉2 ,

where by the virial theorem, the right-hand side is of the order of the binding energy of
electrons in the ion. Unlike existing treatments of ion dynamics (see, for example, Boercker
et al (1987) and Stamm et al (1986)), the present treatment is limited to the case where the
static ion effect is dominant. On the other hand, this approximation enables us to avoid further
simplifications and to get an explicit formula for the coupling between the Green function at
different frequencies (due to ion dynamics ) in terms of the spectrum of fluctuations of the ion
density.
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